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ABSTRACT

We consider in this paper, pulsating laminar flow superposed

on the steady motion of a viscous incompressible electrically

conducting fluid in an annular channel between two infinitely

long circular cylinders under a radially impressed magnetic field.

The general magnetohydrodynamic equations are simplified by the

conditions of the problem to three equations in pressure, velocity

and magnetic field. One equation gives the pressure variation in

the radial direction; the other two are coupled equations for the

velocity and magnetic field, which are functions of the radial

variable only. The solutions of these equations have been obtained

in terms of Kelvin and Lommel functions and the velocity profiles are

examined for different values of the frequencies of pulsation.
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Introduction

In recent years flows through small pipes have been investigated with

increasing interest in the circulation system of the blood and recently theories

of pulsating flow are applied to the supercharging system of reciprocating

engines and the surging phenomena in power plants, and so forth (Uchida 1956).

But it would be of even greater interest to an analyst or experimentalist

to investigate similar types of flow in an annular channel in the presence of

magnetic fields, since the effect of impressed magnetic fields on pulsating

flows are of considerable physical significance particularly in space technology

problems and also biophysical problems.

Globe (1959) has considered the laminar steady state flow in an annular

channel in the presence of a radial magnetic field. In the present investigation

we study analytically the pulsating flow superposed on a steady flow in an

annulus under a radial magnetic field. We assume in the manner of Globe that

an approximation to the desired radial magnetic field may be obtained by the

use of a permeable core within the annulus and a permeable cylindrical shell

outside the annulus. The flux lines would close through these permeable paths

at long distances from the region of interest. The source of the flux could be

Sponsored by the Mathematics Research Center, United States Army, Madison,
Wisconsin under Contract No.: DA-11-O22-ORD-2059.
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disks of permanently magnetized material between the permeable paths and the

annulus channel.

The present investigation aims mainly at the analysis of the pulsating

motion under such a radial magnetic field.

We now consider an infinitely long annular channel of inner radius a and

outer radius b, as shown in cross section in figure 1.

H 0

Figure 1. Annular channel with
impressed radial field.

A radial magnetic field H r P where a is a constant is impressed across the
A rdil agetc ied 0 =r '

channel.

We shall now show that the independence of the electromagnetic quantities

with respect to the coordinate in the direction of flow, us'ally assumed in plane

solution, is a necessary consequence of certain conditions of the problem.
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Governing Equations

On the assumptions that (1) the fluid is incompressible viscous, (2) the

displacement current and free charge density are negligible, (3) the permeability

and conductivity are constant scalar quantities, and (4) the Lorentz force is

the only body force on the fluid, the magnetohydrodynamic equations (Cowling

1957) are

X H ,(1)

- 8 H

VXE =-E- , (2)

V7 H.=0 (3)

(E + 4VX H) (4)

'7.V = 0, )
+(-- V) i-]i+ ti ;2;,the (3)

In these equations H is the magnetic field, E the electric field, 4 the

permeability, j the current density, V the velocity, p the pressure and

v the Kinematic viscosity. (M. K. S. units are understood).

We obtain now, in addition to equation (6), one more coupled equation for

H and V by eliminating j and E among (1), (2) and (4) . Making use of

the divergence relations (3) and (5), one obtains the following equation:

HH . 77t-I .V) V + (V.V) H =H (7)8 t 4 1"
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Equations (6) and (7) must now be expressed in cylindrical coordinates

r, 0, z . The equations (6) and (7) simplify greatly because of the following

conditions:

(1) We assume axial symmetry around the axis so that -8 = 0
1' 86

(2) Since the flow is laminar and parallel to the axis, vr = V( = 0zr
8v

Furthermore, from ( Z, - = 08z

(3) We assume that the applied field H0 =--r fixes the normal component7 Or

of the magnetic field at r = a and r = b for all values of z, and that this is the

only field impressed. Several consequences follow from this assumption:

(a) from the z-component of (4),

i z a-• Ez + ýL(V' 'H , (8)

we note that Jz must vanish. This is because Ez can arise only from an

applied E field or free charges in the flow, neither of which exists, and because

(V x H)z must vanish, since V has a z-component only. Similarly from the

r-component of (4) j vanishes, (Globe 1959). Since H can arise only from

an r or z component of current, there can be no 0 component of H from the

currents in the fluid. Since there is also no impressed magnetic field in the

8-direction, it follows that H0 vanishes everywhere in the channel.

(b) In the manner of Globe (1959) let us consider a section of channel

bounded by transverse planes at z = *h (figure 2). Applying the divergence

theorem, and Equation (3), to this volume, we get
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fff (V.ff)dQ=ffH.dos =0
Volume Surface

But

ffi.7s= -Zrah Hr(a) + Z~rb Hr(b)

+ [irb -ra 2 [Hz(h)-Hz(-h)] . (10)

b

t__a

Z =-h Z =h

* Figure 2. Section of channel bounded by
transverse planes.

Since the first two terms on the right-hand side of (10) cancel each other, it
follows that Hz(h) = Hz(-h) . Since h is arbitrary,,we obtain (aHz/az) = 0

This conclusion is independent of the nature of flow.
aH r

(c) Since Z = 0, it follows from (3) that =-(rH 0 . The
az rr

radial field must then be equal to the impressed field, and is unaffected by the

flow and independent of z
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With these simplifications, the equations (6) and (7) yield:

0-H

8r zr (

av aH a v 1 aVy

P at r Or az ( P r2+ r ar

OH Ov OaH 1Hz u•o- z z I z
r- - - 2 (13)

at r ar BrO r ar

H and v are functions of r and t only. It follows from (12) that k_-Hz z az

must be independent of z . By differentiating (11) with respect to z : it can

Sbe seen that -z is independent of r also. Hence -ýP must be d function of

time t only. We may therefore set

a P (t)

where P(t) is a function of t only.

Once H is determined, the variation of p across the channel may be
z

found by integrating (11):

Hz
p(r, z, t) + - P(t)z

Now (12) and (13) can be rewritten as:

Ov OH [ v 1v
zz 1 zv. - z P(t) + pv + (14)

P at r Or aOr2 r r
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8H 8v 82H &H
zr z_ + 1 z(15)

a-t r ar 2 r ar8r

The boundary condicions for our problem are:

Vz(a,t) - 0, Vz(bt) = 0 , (16)

Hz(b,t) - 0 , (17)

8Hz
ar-- (b~t} = 0 . (18)

Equations (16) contain the no slip conditions. Equation (17) follows from the

fact that j has a 0 component only, so that the currents in the annular

channel are like those in an infinite solenoid. These currents will therefore

produce no field for r > b, and since there is no impressed field in the z-direction,

continuity of the tangential component of H requires (17) to be true. Equation

(18) is obtained as follows. We have

aH
z

But

=o c-i±(VX H)(

aH

and V must vanish at r = b . Hence j must also vanish there and ar
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The Solution

Let us introduce the following non-dimensional quantities and parameters

r tv
Ta 2 1 P

a (Ra- v) I

v H
z z

V-(vla , /a
(v/a)(o-pv) 2

I a3 -1 -2 & =a3 -1 -z€() pv 0 p v P(t)

IL2 02 T
= , y = (1•"v)a "
pv

•: ~and let b

p is a form of Hartmann number appropriate to an annular channel. On

introducing these non-dimensional variables and parameters into the equations

(14) to.(18), we obtain the non-dimensional form of the latter systems

by b

1 av v-o - =x +•~ 4.LE +" _H + •(T) (

28H aH + IOH + av (20)
8OT a 2 x ax + O A

V(xT)=0 at X =1 (21)

V(X ,T) =0 at x = 6 (22)

H( ,) T)= 0 at X =6 (23)

aH"k(x )T) =0 at k 6 (-)4)
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The non-dimensional pressure gradient *(T) is a function of non -dimensional

time T only and hence we can express it in the following form

i•OT

9(T) = 0 + 91 e (25)

where 0 and 91 are constants and may be assumed to be real for the sake of

simplicity and w also a real number denoting the frequency of the vibration.

The corresponding solutions for V and H will now be assumed as:

V(XT) = V0 (X) + Vl(k) eiWT (26)

H(X ,T) H H0 (k) + HI(k) el~aT (27)

The solutions for 9• V and H are respectively the real parts of the expressions

in (25), (26) and (27).

Substituting these forms (2, to (27) into equations (19) to (24) we have the

following sets of equations:

d V0 1 dV dH
+ d -+ + 90, 0  ' (28)

dH 1 dH dV
+ + 0 (29)

dX 2 X d, X dX
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and V0=0 at X =1,6

HO 0oat X =6
(30)

lH0
d 0 at X=6
dX

and d 1 dV + di i A(dk •d-) )k -d) * +÷-- V (31)

dzHH 1 dH1 P dVl
"-w + L -dy + 7 o twh i HI (32)t

We su2itt fo dH0XddX

ofand 
V(9,nfilynereocaa

to get1H.0 at ob ta6i

dHI
-- 0 at X = 6

d)L

First, we shall determine the steady part of the solution from the set (28) to

(30).

WVe integrate (29) once and substitute for dL-O into (28); then we solve the

resulting second order equation for V 0; and then we substitute the resulting

expression for V0. into the first integral of (29), and finally integrate once again

to get H0. We obtain:
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2 6 2 sinh(1In X) - Sinh( In X/6] •2
- 2- sinh(0n [) ; P 44 (34)

p 2-4 sih( n6

.. ±.. 2 4 2 ), ~ ] 24 kIn X - in-- In 6 4 =4 (35)
4(6-4_1) 6

-PO 6 52 {icosh(PlnX)-cosh(PIn6)} -cosh(Pln )+1 1
Hp) = 2_4 2 - sinh (P In 6) J

P *4 (36)

-- 64 n in --- In 6 -+ 6- In6+

2(6 = 4 (37)

Next we consider the equations (31), (32) and (33. The solution of this
I

system of equations for general values of y = (ýpa-v)Z runs into difficulties.

Hence to deal with the actual physical situations, it will be sufficient to solve

the system for y<< 1, since for most of the incompressible, electrically

conducting viscous fluids on the surface of the earth, y << 1

For instance:

Fluid _ _(_Ov_

Hg (20°c) 3. 56 X 10-4

Na(500°c) 1. 55 X 10-3

Pb(500°c) 0.47 X 10- 3
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Hence we shall assume y<< I and w y . Then writing km - we
2

find that the equations (31), (32) and (33) after neglecting terms of O(y ), reduce

to:
d 2 H I d'i d~l
d H _ 1 + = 0 (38)

d V1  I dVl dH 2
- + + L +4, v 0 (39)
dX 2  X d)X X dX 1*-~i-

£ with the conditions

Vl=0 at ) =I, 6

Hi= at ) 6 • (40)
dH1

-- 0dX

From (38) after integrating once and using (40) we obtain .

dH1  V1

d) _ - "(41)

Substituting (41) into (39) we obtain

2dV dV
which k -• 22 2 2ou V1 _ei t l a 4mn

which is a non-homogeneous modified Bessel equation with complex argument.
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The general solution of (42) is therefore of the form

v A(X IP(kX it) + A ) (43)p2 ik

where functions I, K are modified Bessel functions of the first and second

kind respectively and of order P, and s is a Lommel function (Watson

1944) which occurs as a particular integral of (42). A and A are arbitrary

constants. This particular integral can be written either as ascending or

descending power series in the argument (Watson 1944) according as

1 * P (2p-l) or 1 * p = -(Zp-l), where p is a positive integer. For the

sake of simplicity we shall demonstrate the solution when 1 P* p -(2p-1) .

This condition is satisfied when = an odd positive integer . Thus we shall

demonstrate the solution when P, the Hartmann number is an odd positive

integer say equal to Zq - 1, q being positive integer.

Hence in this case we obtain the complete solution of (38) as:

"sl (k6if") {KP(ki !-)I P(k)L 12) 1 -P(kiz) YK P(kX i½) }

S1 ý ki") {K i½(k U-) I P(kX i) -1P(k W1) KP(kXi)}v1(% )X-i• sk~ K(_ • -• _ + s1,(kXi2)

IP(kiW) KP(k6i2) I, k6i 2 ) K P(ki)

(44)
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where the q*Xe sion for the Lommel function is

z +1 z ýL+ 3

8 ' (Z) - 2 2 2_ 2 2
, ( -lZv {(6+l)2-v } {(p.+ 3) -v

and ý t vj- .-(Zl-l), ]p being positive integer.

The fuvOl'owS -1 and K can also be expressed in terms of Kelvin functions

or in terms0000dth-eir 3modiuli and phases. For real x, we have

-i -!P-i.1
I (x. j- -e aP'(berx + ibei x) = M (x) exp {i[(O(x) -L P-rr}

P 2

K (xil :e i (ker x + i kei x) = (x) exp{i (x) + - P3 }

where M a0 and N are their respective moduli and 0 and q are their

respectivepilrhas es. In an analogous manner, we shall write

Sl )- P Cx)i- iQ (x) = L (x) exp {i[x (x)]}
where L (x)(: is that modulus and XQX) is the phase of s, (xif) P and

being the 1gseal a. nd imaginary parts of s nw d(xet.

Onceýed scolutzion for Vl() is known, we cannowdetermine Hl(X from

(41). We iWvRve thus
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SP(k6if) {KP(ki½ ) [f(X ) -f( 6)] - IP(ki½) (gc( b) -g(6)]

i1-S/ (ktz ) {K (k6iz) [f (X-f (6)] - I NkO) [9g(X-g (6)]
Hi(k ) =7 I'l 1,P 0 h,(k) - h(6)

kI L (,ktf) Kp(k,6ti ) - I P(k61ll) KP(ktif

(45)

where _X I (kXl )
X)• .f f dX

g(f ) = f dX,

X S (kkih0L) = f -: X d
S d).

Thus the velocity distribution and tjhe magnetic field are now given by the real

parts of (26) and (27) where V0 ()O , V1(X), H0(X) and Hl(k) are given by

(34) to (37) and (44) to (45).

We next obtain the real parts of these expressions after expressing the

modified Bessel functions and Lommel functions in terms of their moduli and

phases. Thus if we write the velocity distribution as

vtX , T) = Vo0(X)+ vt(X,T),

where Vt(X , r) denotes the time-dependent part, then

0yrf 1 2 1'Vt(X , T) -'2 Y---1 + L,(k1) sin [X (kX)] COS Tt P0

+ xl+ YY + L,(kX) cos [Xp(kX)] sin WT (46)
xoEPk.] siny
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where

Gk, k6 Gk6, k

1 Cos a Cos a
k6yk kfk6

Gkpk 6  Gk 6 ,k

Sin k6 ,k Sin a

G kk ,kkk6 Gk, kkk6 G ,k6,k Gk6,k ,k

X 2-
Cos akpkX~k6 Cos aWLkk , k Cos ak6) kk Cos akL Ik6),k

Gkkkk6 Gk Mk kk6 k k k6,k) ,k

Sin a Sin a Sin a Sin a
kkX ,k6 kkkk6 k6,kkk kX ,k6,k

G x'y m pM(x) Np(Y)

SN(x) + ¢(y)

Gxyz= Mp(x) N (y) L (z)

and cxY z = N 4(x) p(y) xp(z)
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M(x) - berxbei 2 ; tan- berxP P p P ber

N,(x) = ker2 x + kei2 x; qi(x) = tanP Pker P x"

2 2 Q(x)
P~ mP

and P (x) , Q0(x) being respectively the real and imaginary parts of S, (xi•

have the following expressions

P 22 2 22 2 2 2(2 P)(4 8 -) -p?

2 6

Q (x) -2 2(2L - 02 +2 -X4 -2(6 -218 -

2 -. 2 _ 2_- 2 2....
2-P (2 -P)(42-P )(6 -3

Total mean volumetric flow G, flowing in the z-direction is given by

2ff 6
G--Tf d ?Tr 2Xk V(XT)d) (47)

0 1

r64_1 1 4 4 2or G -4 4 {2 (6 -_)-P(6 +1)coth(pln6)+ZP6 cosech(pin6)51

when p24

andG 4(6 16 - 64(In 6)2
andG 6 4-j--1I)(n when • =4.
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Discussion of the Solution

We now investigate the nature of the velocity distribution Vt(X, T) and

the influece of the magnetic field on it. Figures 3 and 4 give the tinie-dependent

velocity profiles in both non-magnetic and magnetohydrodynamic
*0

flows. To illustrate the solution we have chosen w = y, since - y, i. e.

b
k =1 radius ratio of the annulus a--= 2 and * =.10 . The velocity

profiles are obtained for different values of WT, viz 00, to 3600 . In

Figure 3, the velocity profiles are obtained for the Hartmann number P = 0 and

WT = 0° to 360" In Figure 4 the velocity profiles are obtained for the

Hartmann number p= 5 and WT = 0° to 270° . On comparison of Figure 3 with

Figure 4, it is found that the flattening of the profile in Figure 4 which is

characteristic of magnetohydrodynamic flow under a transverse field is evident.

Furthermore, the magnetohydrodynamic flow profiles get even flatter and flatter

as wT increases from 0° to 90° . Then with further increase in WT, the

flow is reversed in direction due to pulsatory motion with the profiles becoming

less and less flat between WT = 90" and 180" . With further increase in CT

from 1800 to 270° , once again the profiles get flatter and flatter. When WT

is between 2700 and 360J, the original direction of flow is restored back and

after this full period of 360" for WT, once again the profiles get flatter and

flatter as cT begins the next cycle of values.

A more general problem of unsteady magnetohydrodynamic flow in an annular

channel is presented in another paper.
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